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Abstract: The transparency coefficients of the semiconductor structure consisting of alternating asymmetric potential 

barriers and wells are calculated, where taken into account the Bastard condition. It is shown that both in the above-barrier and 

over barrier passage of electrons, tunneling oscillations arise. The amplitude, in this case, is determined not only by the values 

of the wave vectors, but from the values of the effective masses of the current carriers. This oscillation does not disappear even 

in symmetric structures if they have a difference in the effective masses of current carriers located in two neighboring regions. 

In symmetrical structures, an oscillation of the coefficient of the above-barrier passage of a particle depending on its energy 

should be observed without taking into account the Bastard condition. Calculations show that for equal values of the width of 

the well and the potential barrier, as well as jumps in the potential of the barrier or well, the amplitude of the oscillations of the 

coefficient of over-barrier passage of particles is greater than the coefficient of passage above the well. In the case of an 

asymmetric structure, these considerations remain valed, but the physical nature of the parameters, for example, the number of 

oscillations, reflection and transmission coefficients, strongly depends on the ratio of the effective masses of electrons in 

neighboring layers and from the ratio of the height of the left and right potential barrier (regarding to the well). In an 

asymmetric (and in a symmetric, but with different effective masses of electrons in different layers) semiconductor structure, 

oscillation should be observed depending on the coefficient of transmission through the potential barrier on the energy of 

electron. This oscillation is caused by the interference of waves going to the barrier and reflected from the potential barrier. 

Such an interference phenomenon in the structure does not disappear even in a symmetric structure due to the difference in the 

effective masses of electrons located in different regions of the structure. The electronic states of a multilayer semiconductor 

structure consisting of alternating potential wells and barriers are analyzed. 
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1. Introduction 

Multilayer compositions of chemically inhomogeneous 

semiconductors have acquired exceptional relevance due to 

the extremely widespread use of these systems in micro- or 

nanoelectronics and in physical research “as discussed by 

Shuka [1]”. Such systems are the main technological 

composition for the element base of integrated circuits and 

form the basis of modern semiconductor electronics “as 

discussed elsewhere [2, 3].” 

The progress of modern microelectronics is largely 

determined by the research of the properties of systems with 

heterogeneously distributed parameters, the development of 

methods for effective theoretical analysis of such systems, 

the development and provision of objective methods for 

controlling technological processes that allow the creation of 

semiconductor layers with desired properties “as discussed 

elsewhere [1-4].” In this work, we consider below the general 

problems of the propagation of electron waves in a medium 

whose properties change only along a certain direction. The 

approach is based on the use of the one-electron stationary 

Schrödinger equation to describe the processes of elastic 

scattering and tunneling of non-interacting spinless particles, 

provided that their total energy is preserved. 
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The research of the electronic properties of both symmetric 

and asymmetric in relation to the geometric dimensions of 

the layers of the semiconductor structure is relevant in 

connection with the use of these structures in micro- or 

nanoelectronics and in other areas of solid state physics “as 

discussed elsewhere [1-6].” The dynamic conductivity σ (ω) 

or the current j (ω) of the system response to an external 

action in a semiconductor multilayer structure were 

calculated “as discussed elsewhere [7-17]”. The theory was 

created in different models using various mathematical 

methods for solving the complete Schrödinger equation for a 

system of electrons interacting with an electromagnetic field 

in a structure with a shaped potential barrier. In these works, 

the problem was solved without taking into account the 

Bastard condition “as discussed by Bastard [2, 3]”, i.e. the 

difference in the effective masses of current carriers in 

neighboring layers of the structure is not taken into account. 

Modern technology makes it possible to obtain 

semiconductor layers with an arbitrary profile of composition 

change (structure with a quantum well) to improve the 

characteristics of devices obtained on their basis “as 

discussed elsewhere [1-5].” In this case, the problem of 

electron states is reduced to the problem of the behavior of a 

particle in rectangular potential wells, between two 

neighboring which have a potential well, described by the 

relation research “as discussed by Rasulov [4]” (see Figure 1) 
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Figure 1. Structure with asymmetric potential barriers. 

Further, we note that to create a new generation of 

resonant tunnel diodes, heterolasers with separated electronic 

and optical confinement, structures with rectangular size-

quantized wells are used, in the center of which there is an 

additional energy dip. Such a structure is described by 

potential (1), where it is necessary to consider that

4, 0,j jU U + 〉
 

1 3 2, 0, 0j j jU U U+ + += 〈 . 

2. Materials and Methods 

2.1. General Relations 

Nanostructures grown on the basis of a narrow-gap 

semiconductor between two layers of wide-gap material are 

described as a structure with asymmetric rectangular 

potential barriers, i.e. with potential (1), where 2, 0,j jU U + 〉

1 3 4, , 0j j jU U U+ + + =  (see Figure 2). 

 

Figure 2. Asymmetric structure with a single potential well. 

Then the wave function of the electron in potential (1) can 

be represented as 

( ) ( )
( ) j jik x ik x

j j jx A e B eψ −= + ,                       (2) 

where ( )2

2
( ) ,

j

j j j

m
k x k E U= = −

ℏ

 1, 2,3,...j = . 

Further, we assume that the effective masses of the 

electrons in the neighboring layers are different. Therefore, 

the boundary conditions for the wave functions of electrons 

have the form “as discussed by Bastard [6]” 

1

1
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Substituting (2) into (3) we obtain the expressions for the 

amplitudes of the electronic de Broglie waves 
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where j
j

j

k
k

m
=ɶ . To simplify further calculations, we 

introduce the transfer matrix satisfying the following equality 

( ) ( )

( ) ( )
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, ,

21 22
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j j j j
j jj j j
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j j j

A AA T T
T

B BB T T

′ ′
′ ′′

′ ′

     
 =     
           ɺɺ ɺɺ

          (5) 

where the matrix elements in the case 1j j′ = +  
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Note that for the matrix ( , 1)ˆ j j
T

+ we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 1
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the matrix ( , 1)ˆ j j
T

+
 becomes a unipolar matrix in the case

1j jk k+ =ɶ ɶ , i.e. for symmetric structures “as discussed by 

Ivchenko and Pikus [6],” when the height of potential 

barriers and the effective masses of electrons are the same. 

We note here that a similar problem was solved in “as 

discussed elsewhere [7-11].” for a symmetric structure 

without taking the Bastard condition into account, and “as 

discussed elsewhere [12-18]” for structures with a potential 

barrier. 

2.2. Electronic Properties of the Structure with one 

Potential Barrier 

Now consider the concrete cases: let the three-layer 

structure be in the middle of one potential barrier (see Figure 

3). Then the reflection coefficients ( ), 2j jr +
 
of the potential 

barrier and the passage through the potential barrier 

introduced ( ), 2j jt +  as ratios of the density of probability 

flow in the reflected and transmitted de Broglie waves of 

electrons in the incident wave, in the form of the transfer 

matrix, have view 
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Where it was consedered that electron transfer occurs 

according to the scheme 1 2j j j→ + → + . Then the matrix 

elements of the transfer matrix ( , 2) ( , 1) ( 1, 2)j j j j j j
T T T

+ + + +=
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Figure 3. Structure with one potential barrier. 

Note here the following: 

1. The coefficient 2j jt → + is invariant to transformation

( 2)j j↔ + , which means the coefficient of 

transmission does not depend on which side electrons 

go on the potential barrier. 

2. The coefficients 2j jt → + and 2j jr → + are true for both 

above-barrier ( )jE U〉 and under-barrier ( )jE U〈

passage of electrons. In the latter case, it is convenient 

to use type ,m n m nk iκ+ +=ɶ ɶ
 

( ) ( ) ,
2 2 m m ni

m m n m m nk k k e
φκ +±

+ +± = ±ɶ ɶ ɶ ɶ
 
transformations 

when, mkɶ
 
is real, and m nk +

ɶ

 
is imaginary quantity, 
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where ( ),
m n

m m n

m

arctg
k

κφ +
+ =

ɶ

ɶ
. Then, it should be noted 

that during the transition from one area to another in 

waves electrons there should be a phase shift, which is 

related not to the coincidence of the phases of the waves 

propagating in different, but in neighboring, areas. 

3. For a symmetric structure with 2j jU U += we have 

( )
1

22 2

1 1 2
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1
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  (11) 

4. In the asymmetric (and in the symmetric, but with 

different effective masses of electrons in different 

regions (layers)) structure should be observed 

oscillation in the spectral dependence as a coefficient

2j jt → + , i.e. in the effect of tunneling, and in the 

transparency coefficient of the potential barrier. The 

amplitude of this oscillation is determined by the 

difference between the wave vectors of electrons 

located in the potential barrier and in the neighboring 

potential wells, i.e. ( )1j jk k+ −ɶ ɶ and ( )2 1j jk k+ +−ɶ ɶ

.
 Such 

an interference phenomenon in the structure does not 

disappear even in a symmetric structure due to the 

difference between the effective masses of electrons in 

different layers of the structure. 

Next, we define the expression for the coefficient of 

transmission through the structures from region j to region j 

+ 2 for an arbitrary ratio of the carrier energy to the height of 

the potential barrier. So 

( )
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                            (12) 

It should be noted that both in the above-barrier and in 

theover-barrier passage of electrons, oscillations of tunneling 

arise due to the interference of reflected de Broglie waves. 

The amplitude, in this case, is determined not only by the 

values of the wave vectors, but on the values of the effective 

masses of the carriers. Note also that this oscillation does not 

disappear even in symmetric structures, if they have a 

difference in the effective masses of current carriers located 

in two adjacent regions. According to the last expression, as 

the difference ( ) ( )2 2/ /j j j jU m U m+ +−  decreases, the 

oscillation becomes less pronounced and when it disappears, 

even ( ) ( )2 2/ /j j j jU m U m+ += the structure will be 

asymmetric. 

Figure 4 shows the dependence 
( ), 2j j

t
+

 on ( )1j jx x+ −  for 

the structure from AlAs - 0.53 0.47In Ga As - InAs , from which 

it can be seen that the oscillation frequency increases with 

increasing electron energy. Where calculating the following 

parameters are selected: 55jU meV=
, 

1 35jU meV+ =
 

2 45jU meV+ =
, 

1 00.046 ,jm m+ = ⋅
 

2 00.023 ,jm m+ = ⋅
 

3 00.124jm m+ = ⋅ . Calculations show that if we increase the 

effective mass by 1.6 times, then the amplitude and 

frequency of oscillations increase by about 1.2 times, which 

means it is can be controled the oscillation by choosing a 

sample of different chemical composition. 

 

Figure 4. The subbarrier reflection coefficient for the structure is AlAs -

0.53 0.47In Ga As  - InAs , where the solid line for electrons with an energy of 

150 meV, points for electrons with an energy of 50 meV. 

2.3. Stationary Localized States in a Rectangular 

Asymmetric Potential Well 

To determine the energy spectrum of localized states, we 

will use the criterion for the existence of such states, defined 

by equation 
(2)

11 0T = . In this case, we take into account that 

the localized state of a particle in an asymmetric potential 

well corresponds to a distribution of the wave function for 

which the Schrödinger equation for this cases are rising. 

Therefore, in the solutions (for a specific case) it is necessary 

to exclude the terms of the form 1
1

k x
a e

−
 and 1

3
k x

b e
−

, for 

which we assume that. Then 
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whence the condition of existence of localized states looks 

like 
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Next, we determine the localization energy of electrons in 

their both above-barrier and over-barrier transport, where, for 

simplify of further analysis of the results, we assume that the 

regions “1” and “3” are physically same. 

From the last, it is not difficult to obtain that the localized 

level is dimensionally quantized, i.e. 

( )
2 2 2

3,1

3,1 3,1 2

3,1 2 3,1

( 0; )

8
y z

n
E k k n

m x x

π
= = =

−

ℏ
and are located in 

areas “1” and “3”, where 3,1 0,1,2,...n = . If such dimensional 

quantization does not occur, then the localization energy in 

the current case, when the regions “1” and “3” are physically 

same, is determined from the following transcendental 

equations: 

for above-barrier transition of electrons 

( ) [ ]
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+
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−

ɶ ɶ
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for over-barrier transition of electrons 
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x x k
e

k

κ κ
κ

− −
=

+

ɶɶ

ɶɶ
.                         (16) 

From (15) it is easy to obtain that in the structure under 

consideration there is only one localized level of electrons, 

regardless of what the thickness of the layers. 

For a structure with the same effective electron masses, 

during the sub-barrier electron transition, dimensional 

quantization of their local states occurs, which is determined 

by the expression 

2 2
(2)

22
2 2 18 ( )

nE U
m x x

π= +
−
ℏ

.                     (17) 

2.4. Resonant Tunneling Through a Double-barrier 

Structure, Taking Into Account the Bastard Condition 

Consider the over-barrier transition of electrons with 

energy 1, 3j jE U + +〈  (i.e.
 

1 1,j jk iκ+ +=
 

3 3j jk iκ+ += ) through 

an asymmetric structure. Then the matrix element of the 

transfer matrix (12) in the case 1j = is determined by the 

sum of the multiple 1 2A A× and 1 2B B× , where 
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Thus, the expression for the transparency of barriers is 
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For the completeness, we further consider that the 

potential energies 1 3 5, ,U U U exceed the electron energy 

( 1 3 5, ,U U U E〉 ) and 2 4 2 1 4 3,k k x x x x= − = − , then, the 

energy spectrum of electrons in a structure with a potential 
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well divided with low transparency, i.e. when 

( )3 3 2exp 1x xκ − − 〈〈  described by the expression
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. Next, we define 

the energy spectrum of localized states of electrons in a 

structure with a rectangular asymmetric potential well, where 

we also assume that the physicochemical properties of the 

potential wells “1”, “3”, “5” and barriers “2”, “4” are the 

same. In this case, the matrix element of the transfer matrix is 

(5)
1 2 1 211T A A B B= × + × ,              (22) 
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For above-barrier electron transport, we have 
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and in the case of over-barrier electron transport 
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Then for localized states of electrons in which energy is 

greater than the heights of the potential barriers, we have the 

following transcendental equation 

( ) ( ) ( ).~~

~~
2

2122112

2

2

1

21 xktgxkctg
kk

kk ⋅=
+

 (26) 

2.5. Wave Function of Electrons in an Asymmetric 

Structure 

Consider the wave function for the asymmetric structure 

shown in Figure 5 ( ) , (j 1, 2)j ji k x i k x

j j jx A e B eψ −= + = . If 

we assume that j 2= the layer is a barrier (that is, we 

believe that), then from the boundary condition of Bastard we 

have the form (consider that 1 0A = ) 
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Figure 5. Asymmetric structure with two potential barriers. 

From the normalization condition for the wave function, 

the expression for the coefficient 
2

A  is determined by the 

ratio 

( ) ( )
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2

2

2

122
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3. Results and Discussion 

We begin the discussion of the obtained results with the 

expression for 
)4,(

11

+jjT , where we assume that 3,1 ++ jj

the regions are potential barriers (the other potential wells). 

Then it is not difficult to make sure that even in 

nanostructures, where potential wells are dimensionally 

quantized, interference tunneling phenomena can be 

observed. Note that in this case the degree of observation of 
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the interference pattern is described, i.e. controlled only with 

barrier parameters. Such a phenomenon disappears in the 

case of a subbarrier transition of electrons when 

( ) 1122 〉〉− +++ jjj xxk  (or ( ) 1122 〈〈− +++ jjj xxk ). In thes 

case 

2
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So in symmetric structures, an oscillation of the coefficient 

of over-barrier passage of a particle depending on its energy 

should be observed without taking into account the Bastard 

condition. Calculations show that with equal values of the 

width of the well and potential barrier, as well as jumps of 

the potential of the barrier or well, the amplitude of the 

oscillations of the over barrier coefficient of passage of 

particles is greater than the coefficient of passage over the 

well. 

In the case of an asymmetric structure, these arguments 

remain valid, but the physical nature of the parameters, for 

example, the number of oscillations, reflection and 

transmission coefficients, strongly depends on the ratio of the 

effective masses of electrons in adjacent layers and on the 

ratio of the height of the left and right potential barrier (in 

relation to the well). 

Note that in an asymmetric (and symmetric, but with 

different effective masses of electrons in different layers) 

semiconductor structure, an oscillation should be observed in 

the dependence of the transmission coefficient through the 

potential barrier on the electron energy. This oscillation is 

due to the interference of the waves going to the barrier and 

reflected from the potential barrier. Such an interference 

phenomenon in the structure does not disappear even in a 

symmetric structure due to the difference between the 

effective masses of electrons located in different regions of 

the structure. 

In the case of an asymmetric structure, these 

considerations remain valid, but the physical nature of the 

parameters, for example, the number of oscillations, 

reflection and transmission coefficients, strongly depends on 

the ratio of the effective masses of electrons in neighboring 

layers and on the ratio of the height of the left and right 

potential barriers (with respect to the well). We note that in 

an asymmetric (and symmetric, but with different effective 

masses of electrons in different layers) semiconductor 

structure, oscillation should be observed depending on the 

coefficient of transmission through the potential barrier on 

the electron energy. 

This oscillation is due to the interference of waves 

traveling to the barrier and reflected from the potential barrier. 

Such an interference phenomenon in the structure does not 

disappear even in a symmetric structure due to the difference 

in the effective masses of electrons located in different 

regions of the structure. 

4. Conclusion 

To calculate a number of kinetic parameters (for example, to 

calculate the stationary or unsteady conductivity, or the 

current-voltage characteristic-dependence of the tunneling 

current on voltage) of asymmetric double-barrier resonance-

tunneling structures with rectangular barriers, one can use the 

analytical solution of the Schrödinger equation taking into 

account the Bastard condition, i.e. taking into account the 

difference in the effective masses of electrons in neighboring 

layers of the structure, proposed above. In this case, these 

kinetic parameters, in particular, the tunneling current that 

flows through the structure barriers, will depend not only on 

the parameters of potential barriers and wells, but also on the 

effective masses of the current carriers. This case requires a 

separate consideration, to which the next work will be devoted. 
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