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Abstract: The diffusion behavior of the system driven by the non-Gaussian noise and its time derivative are investigated in
detail. The temperature dependence of the noise spectral profile is firstly analyzed using Monte Carlo simulations, which is shown
that the spectrum of the non-Gaussian noise is a decreasing function of temperature when the frequency is sufficient small. By
contrast, its derivative is Gaussian and vanishes for the low frequency. In addition, diffusion behavior of the system subjected to
non Gaussian noise or its time derivative are more detailed discussed within the framework of the generalized Langevin equation.
It is particularly revealed that the system driven by the internal non-Gaussian noise behaves as normal diffusion for various
temperatures, while the time derivative of the non-Gaussian noise induces ballistic diffusion of a free system and the variance is
sensitive to the initial condition which implies the breaking of the ergodicity.
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1. Introduction

During last decades, there are a wealth of researches on
the noise-induced phenomena [1, 2, 3, 4, 5]. A large number
of examples are stochastic resonance of the systems [6, 8],
noise-induced transitions [9], noise-induced phase transitions
[10, 11, 12, 14], noise-induced transport [14, 15], etc. In
many situations, the noises actually play a significant role in
inducing new ordering phenomena. Vast majority of studies
on the noise-induced phenomena indicated above assume that
the noise source has a Gaussian distribution (either white or
colored). However, there are some experimental evidences,
particularly in sensory and biological systems [16], offer
strong indications that in some of these phenomena the
noise source could be non-Gaussian. Examples are current
measurements through voltage-sensitive ion channels in a
cell membrane or experiments on the sensory system of rat
skin [17, 18]. Previous studies on the role of non Gaussian
noises on some noise-induced phenomena have shown the
possibility of strong effects on the system’s response. For

instance, enhancement of the stochastic resonance in a double
well potential driven by a colored non-Gaussian noise [19].
Besides, an enhancement of current due to the non-Gaussian
character of the noise appears in the ratchet potential [20].
Moreover, in the anti-tumor model with correlation between
multiplicative non-Gaussian noise and additive Gaussian-
colored noise, it has been found that an increase in both
the non-Gaussian noise intensity and the departure from the
Gaussian noise can accelerate the transition from the disease
state to the healthy state [21]. These results motivate the
interest in analyzing the effect of non-Gaussian noises on the
diffusion behavior of the system. The substantial progress
that has been achieved towards an understanding of anomalous
diffusive behavior of a system during the last few years show
that system driven by non-Gaussian noise exhibit anomalous
diffusive behavior and their stationary state are non-Gaussian,
such as Lévy flight [22, 23]. Whether a non-Gaussian noise
will always induce abnormal diffusion? and what is the
property of the time derivative of the non-Gaussian noise?
These questions are required to be addressed and investigated.
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Based on the above considerations, we present a more
detailed discussion of the diffusion behavior of the system
subjected to the non-Gaussian noise or its time derivative. This
paper is organized as follows. In Sec. 2, we introduce the
non-Gaussian noise and its time derivative and present their
stationary distribution and spectral density. In Sec. 3, we
discuss the numerical results for the system subjected to the
noise and its time derivative. Finally, we summarize the main
results and give a brief conclusion in Sec. 4.

2. Non-Gaussian Noise and Its Time
Derivative

We consider the dynamics of non-Gaussian noise described
by the following Langevin equation:

y==z(t), 2=-vz+y—y>+n(t), (1)

where 7)(t) is the Gaussian white noise which satisfies ((t)) =
0 and the fluctuation-dissipation relation (n(t)n(s)) =
27k T (t—s), 7 denotes the damping coefficient, k;, and T are
the Boltzmann constant and temperature, respectively. We can
obtain the stationary distribution and correlation function of
y(t) by simulating Eq. (1)numerically. The spectral density of
y(t) is the Fourier transform of the correlation function which
is defined as

s(w,T) = 2Re /OOO (y(0)y(t))p e~ “tdt. ()

In Figure 1, we present the stationary distribution p(y)
and the spectral density of the y(¢) for various values of the
temperature.
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Figure 1. (a) The stationary distribution p(y) (b)Spectral densities of y(t) for different values of temperature. The parameters used is ¥ = 0.4
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Figure 2. (a) The stationary distribution p(z) (b)Power spectrum of z(t) for some value of temperature. The parameters used is ¥ = 0.4.

It is obvious that the stationary distribution for different
temperatures is non-Gaussian. Note that the spectral density of
y(t) is temperature-dependent. At low temperature (e.g. T =
0.5 and T = 1), the spectral density has a high peak
at w = 0. For a relatively high temperature(e.g. T =
4 and T = 10), the peak around a finite frequency is

generated and it shifts to large frequency with the increase of
temperature. The reason for the phenomena can be explained
as follows: at finite temperature, the probability for the
particle that jumps from a well to the other is given by
the Kramers rate R = —- exp[—ﬁ]. For the case

V2 L
of low temperature, the intensity of the white noise is not
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large enough to make the particle jump from one well to the
other and the hopping rate for the particle is small, in this
case, the particle remains in one well for a long time. As a
consequence, the spectrum has a high zero-frequency peak,
which implies similar spectral profile to Ornstein-Uhlenbeck
noise. With the increase of temperature, the hopping rate
between the two well grows, then the peak at w = 0 reduces
and a peak around a finite frequency is generated. In such
case, the spectral profile behaves similarly as the harmonic
noise. If the temperature continues to rise, the spectral profile
does not change but the peak shifts to large frequency. An
interesting phenomena is that when the frequency is sufficient
small the spectrum decreases with the temperature. Due to
decoherence rate being proportional to S(w,T), when a two
state quantum system is resonant with this spectral component,
the quantum decoherence rate is a decreasing function of the
temperature[24], this result can have relevant consequence for
the design of quantum computers at nanometer scale.

In addition, the stationary distribution of z(t) is obtained
by solving the Langevin equation Eq. (1) numerically and
its spectrum can be evaluated as the Fourier transform of the
autocorrelation function (z(0)z(t)), the results are shown in
Figure 2.

For different values of temperature, the stationary
distribution p(z) is Gaussian. As shown in Figure 2(b), the
power spectrum of z(t) possesses the feature that the low
frequency part vanishes, which is similar to the spectral profile

of the harmonic velocity noise.

3. Diffusion Behavior of the System
Subjected to Non Gaussian Noise or
Its Time Derivative

In this section, we discuss the case when the non-Gaussian
noise or its time derivative is used as an internal noise to drive
a system. We focus on the diffusive behavior of the particle
driven by the proposed noise within the framework of the
generalized Langevin equation(GLE).

The GLE including the non Gaussian noise y(t) for the
system in the force-free field can be written as

p=v o)== [0, O

where «(¢) is the damping kernel function due to y(¢). The
autocorrelation function of the noise satisfy the fluctuation
dissipation relation(y(t)y(s)) = kyTy(t — s). In the
numerically calculation, the initial condition is 2(0) = 0, v(0)
obeys a Gaussian distribution with zero mean and variance v3.

In Figure 3, we show the time evolution of the variance 22 (t)
and v2(t) that obtained by solving the GLE (3) numerically,

here k; = 1 is used.
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Figure 3. The time evolution of the variance x> (t) and v? (t) for the system driven by non gaussian noise y(t) in the force-free field. The parameters used is ¥ = 0.4.
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It observed that z%(t) is proportional to ¢, that is to say,
the system driven by the non-Gaussian noise y(t) behaves as
normal diffusion for various temperature. Moreover, the value
of v%(t) in the long time limit does not depend on the initial
distribution of the velocity and v*(t — 00) = kT

If the internal noise in GLE (3) is time derivative of y,
i.e. z(t), the mean-square displacement of the particle is
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proportional to ¢2, which means the ballistic diffusion appears
in the long time limit. These claims are presented in Figure
4, where we show the calculated result for the variance 2 (t)
and v%(t) of free particle with the initial velocity obeying a
Gaussian distribution.
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Figure 4. The time evolution of the variance = (t) and v* (t) for the system driven by z(t) in the force-free field. The parameters used is 7 = 0.4.

Moreover, the asymptotical result for the system subjected
to z(t) is sensitive to the initial condition. It is obvious that the
value of v?(t — oo) depends on the initial distribution of the
velocity, which implies the breaking of the ergodicity. Then
the time derivative of the non Gaussian noise has the properties
similar to the harmonic velocity noise [26, 27, 28].

4. Conclusions

In summary, the diffusion behavior of the system driven
by the non Gaussian noise and its derivative have been
investigated respectively. The non-Gaussian noise is produced
by a system in double well potential and subjected to a white
Gaussian noise. The stationary distribution and correlation
function are detected by simulating Langevin equation
numerically. The results have revealed that its spectrum is
a decreasing function of temperature when the frequency is
sufficient small, due to the temperature dependence of the
spectral profile, while its derivative is Gaussian for different
values of temperature. In addition, diffusion behavior of the
system subjected to non Gaussian noise or its time derivative
have been more detailed discussed within the framework of
the generalized Langevin equation. The system in the force
free field driven by the non-Gaussian noise behaves as normal
diffusion for various temperatures; while the time derivative
of the non Gaussian induces ballistic diffusion of a free system

which leads to nonergodicity. We are confident that the present
results will play part in understanding the role of non Gaussian
noise-induced phenomena and stimulate further studies.
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