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Abstract: The particular interest of this paper is to investigate the impact of various values of temperature exposed to weak 

and strong magnetic field strength. A thermodynamic property's oscillatory change as a function of magnetic field effect (B) 

intensifies the quantization of electron orbits in a constant magnetic field intensity and is the primary contributor to the de 

Haas-van Alphen effects due to cyclotron frequency and its impact on localizing electron at circular region imposed with the 

magnetic field that is in contrary to the result of the temperature effect. Thus the interdependent effects of external magnetic 

field and temperature on thermodynamic properties are studied with harmonic oscillator potentials considering material 

parameters of GaAs quantum dot. The finite energy state is analytically solved using Nikiforov-Uvarov mathematical 

formalism. Moreover, the direct impact of the external magnetic fields and temperature on thermodynamic properties of the 

system is analyzed, and numerically simulated using matlab R2017a version. The dominance of temperature over the external 

magnetic field and vice versa effect is investigated, thus the value specific heat capacity fluctuated, while the equiponderate 

impact of temperature and magnetic field shows similar steady values of the specific heat capacity. The study clearly shows the 

interdependence of magnetic field and temperature affect thermodynamic quantities: partition function, mean energy, entropy, 

and specific heat capacity. 

Keywords: Energy Spectrum, NU Method, Quantum Dot, Partition Function, Means Energy,  

Entropy and Specific Heat Capacity 

 

1. Introduction 

Quantum dots are often referred to as artificial atoms 

because of their atom-like electron energy spectrum. They 

are alluring to a wide range of optoelectronic applications 

[1] due to their optical properties, similar to those of atoms. 

The Schrödinger equation is one of the fundamental 

equations in quantum physics which still attracts strong 

interest of both physics and mathematics. Many advanced 

mathematical methods have been used to solve it. Among 

the most popular methods, the variational method [2], the 

path integral method [3, 4], the functional analysis method 

[3], super symmetric method [5], the factorization method 

[6], the Nikiforov-Uvarov method (NU) [7, 8] and the 

quantization rule approach [9] are well employed to solve 

the Schrödinger equation of two electron problems. 

Efficient technique to solve second-order homogeneous 

differential equations has been the subject of extensive 

investigation in recent years, particularly when dealing with 

non-central potential. The Schrödinger equation has been 

investigated for several potentials such as the Woods- 

Saxon potential [10, 11]; harmonic oscillator potential [12-

14] Coulomb potential [15] and Yukawa potential [16] 

Calculation of the physical quantities in many physical 

sciences is the essential work we need to perform. As a 

consequence, the exact solutions of the Schrödinger and 
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Dirac wave equations have become the essential part from 

the beginning of quantum mechanics [17] and such 

solutions have also become useful in the fields of atomic 

and nuclear physics. Currently, recent researches on the 

nanometer scale have opened new fields in fundamental 

sciences of physics, chemistry, and engineering such as 

optoelectronic devices, which are termed nanoscience. In 

fact, the spherical QPDs confinement is one of the most 

appealing explored applications of semiconductor 

nanostructures when it is doped with shallow donor 

impurities [18]. Namely, the impurities are used in both 

transport and optical properties of physics. However, some 

researchers have extensively studied topics like confined 

donors or acceptors in nanostructures [19, 20]. It is well-

known that factors such as impurity, electric and magnetic 

fields, pressure, and temperature play important roles in the 

electronic, optical and transport properties of low-

dimensional semiconductor nanostructures [21-24], hence, 

many works in 2D quantum dots and semiconductors are 

studied under the influence of external magnetic field [25]. 

The paper is organized as follows. In section 2, 

pseudoharmonic interaction is studied under the influence of 

external magnetic and reduced to harmonic interaction. The 

exact analytical expressions for the finite energy level are 

calculated. The thermodynamic properties like partition 

function, mean energy, entropy and specific heat capacity with 

magnetic field and temperature dependence are also 

investigated. In section 3, results and discussions are 

performed. Finally, concluding remarks are given in section. 4. 

2. Theoretical formalism 

2.1. Quantum Dot and Antidot in External Fields 

Consider a 2D single charged electron e, with an effective 

mass �, interacting via a radials symmetrical dot (electron) 

and antidot (hole) potential in a uniform magnetic field, AB 

flux field, applied simultaneously. The Schrödinger equation 

with interaction potential field has the form 

[
�
�� (�� + 	


 ��)� + 

��(�)]�(�, �) = ��(�, �)          (1) 

Where E is the energy eigenvalues,	�� is the momentum, �	is the effective mass of an electron and 

���	(�)  is the 

scalar pseudoharmonic interaction defined by (Tezcan, 2007) 

[26]. 



���(�) = 
�( ��� − ��
� )�                          (2) 

Where �� and 
� are the zero point effective radius and the 

chemical potential. Besides, the vector potential ��	 in 

equation (12) may be represented as a sum of two terms 

(�� = ��� + ��� ), having the azimuthally components ��� =��
� ��  and ��� = � !

�" ��  where #$� = #%̂ is the applied magnetic 

field and �� describes the additional magnetic flux �'� 

created by a solenoid inserted inside the antidot (pseudodot). 

Let us take the wave function �(�, �)  in cylindrical 

coordinates as 

�(�, �) = �
√�" exp(,-�) .(�),	                   (3) 

where m is the magnetic quantum number (m =0,±1,±2,…). 

Inserting the wave functions (14) into the Schr 34 dinger 

equation (12) we obtain a second-order differential equation, 

.55(�) = �
� .5(�) 67��� + 8�� − 9:

�:;,	              (4) 

with 8� = ��
ℏ: (8 + 2
�) − �=

ℏ (- + >), > = � !
�� 	 and 7� =

��?�
ℏ:��: + (

��@=
�ℏ )�. 

Here >  is an integer with the flux quantum 	�� = ℏ

	 , 

B
 = 	�
�
 is the cyclotron frequency. A radial wave function 

g(r) has to satisfy the asymptotic behaviors, that is, .(0) → 0 

and .(∞) → 0. To determine the solution of equation (15) 

amendable by NU method, it is necessary to introduce the 

following change of variables F	 = 	 ��  mapping �8(0,∞) 
into � ∈ (0,∞) which in turn recasts equation (15) into the 

hyper geometric form of equation (1). Applying the basic 

ideas of reference [7] and comparing it after changing the 

variable gives the essential polynomials 

H̃ = 2, J(F) = 2F, JK(F) = 7��� + 8F − L�            (5) 

and substituting the polynomials given by equation (16) into 

equation (6), we obtain M(F) as 

M(F) = ±N7��� + (2O −∈�)F + L�	               (6) 

The expression under the square root of the above equation 

must be the square of a polynomial of first degree. This is 

possible only if its discriminant is zero and the constant 

parameter (root) k can be found by the condition that the 

expression under the square root has a double zero. Hence, k 

is described as O± = ∈:
� ± L�. In that case, it can be written in 

the four possible forms of; 

M(F) = P+(7F ± L), Q3�	OR = 1 2⁄ 8� + L�
−(7F ± L), Q3�	OT = 1 2U ∈�− L� .           (7) 

One of the possible forms of M(F)  must be chosen to 

obtain an energy spectrum formula. Therefore, the most 

suitable physical choice is 

M(F) = L − 7F.	                               (8) 

This choice provides the negative derivative of H(F)  as 

required. Hence, M(F)	and H(F) are 

H(F) = 2(1 + L) − 27F, 75(F) − 27                  (9) 

In this case, a new eigenvalue equation becomes 

V� = 27W, W = 0, 1, 2…	                     (10) 

As it expressed in equation (4) it has been used for the 

radial quantum number n. Another eigenvalue equation is 

obtained from the equality V = O + M′ 
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V = Y:
� − 7(L + 1)                          (11) 

In order to find an eigenvalue equation, the right-hand 

sides of equation (10) and equation (11) must be compared 

with each other, i.e.,	V� = V. In this case the result obtained 

will depend on ��,Z in the closed form: 

8� = 27(2W + 1 + L)                      (12) 

Upon the substitution of the terms in equation (12) we can 

immediately arrive at the energy spectrum formula in the 

presence of pseudo-harmonic potential 

��,Z(>, #) = ℏΩ(2W + 1 + |L|) + �
�ℏB
(- + >) − 2
� (13) 

Where L = N(- + >)� + ]�  where, energetic spectrum 

formula (13) for the energy levels of the electron (hole) is 

usually used to study the thermodynamics properties of 

quantum structures with dot and antidot in the presence and 

absence of magnetic field. In the absence of 2
�	term, the 

above formula becomes the Bogachek Landman [27] energy 

levels in the presence of magnetic and AB flux intensity of 

quantum dot it could be harmonic potential energy spectrum 

from reference [28]. 

��,Z(>, #) = ℏΩ(2W + 1 + |L|) + �
�ℏB
(- + >)        (14) 

In the absence repulsive radius AB flux intensity (a=0, > = 0 ) finite energy level as reference [29] for the non-

relativistic harmonic oscillator potential, we can obtain, 

��,Z = ℏΩ(2W + 1 +-) +	��ℏB
(-)              (15) 

2.2. Thermodynamic Properties 

Thermodynamic properties of quantum systems have become 

very attractive due to their potential applications in thermoelectric 

devices [30] tunneling and decoherence [31]. Thermodynamic 

properties of quantum systems now aid in the investigation of the 

dynamical entropy [32, 33]. Recently, different definitions of 

specific heat are discussed [34] and the entropy for a quantum 

oscillator in an arbitrary heat bath at finite temperature is 

examined [35, 36]. Experiments [37] show the feasibility of 

processing quantum information (QI) via the manipulation of 

optically excited electron spins [38] in a diamond. Considering the 

system to be at equilibrium with a heat bath at temperature T, for 

the finite energy level of harmonic oscillator given in equation (14) 

the canonical partition function is, 

% = ∑ exp_−LℏΩ(2W + 1)` exp_−LℏΩ(- + >) −�,Z LℏB
(- + >)` ,                            (16) 

where	L	 = �
a!b , O�  is the Boltzmann constant. The sum is 

over the discrete energy levels given equation (25) without 

pseudo-potential. Introducing dimensionless variables c�d9ℏe 

and c� = 9ℏ@=
�  the equation of partition function may be 

simplified as given in reference [39]. 

% = fg�hij
k lmno6pjqp:: ; lmno6pjrp:: ;fg�hij.                   (17) 

It is well known that partition function of the system is 

calculated from bound state energy level where as all 

thermodynamics quantities are derived from the partition 

function of the system. The internal energy U for the system 

is given by 

s = − tu�v
t9 .	                               (18) 

The Helmholtz free energy (w) and the entropy (F) is; 

w = − u�v
9 ,	                                 (19) 

F = �
b x−c� coth(Lc�) + ijRi:

� coth 6L ijRi:� ; + ijTi:
� coth 6L ijRi:� ; + c� coth(Lc�)} + O� xln	(F,Wℎ(Lc�) − F,Wℎ 6L ijRi:� ;) −

ln	(F,Wℎ 6L ijTi:� ; − F,Wℎ(Lc�)) − �W4}                                                                (20) 

The specific heat capacity is given as 

	�� = O�L� t:u�vt9:                           (21) 

3. Discussion and Result 

The thermodynamic properties of a two interacting electrons 

harmonically oscillator confined interacting electrons in a 

GaAs quantum dot with parabolic confinement are 

investigated as a function of interdependence of temperature 

and magnetic field. We obtained the energy spectrum of the 

system in closed form by solving Schrödinger equation 

analytically and then we solved partition function, mean 

energy, heat capacity, entropy, specific heat capacity using the 

canonical ensemble approach. A partition function as 

temperature increases quickly increased for the lower magnetic 

fields. As function of temperature, it was demonstrated that the 

heat capacity exhibits a highest fluctuations with strong 

magnetic fields influences at a very low temperature and vice 

versa. We also found that, at low temperature entropy 

increases steeply as the temperature increases, and at very high 

temperatures the entropy reaches the saturation limit. 

We used material parametric values of GaAs ℏω =1.05243ℏω� , ℏω� = 0.1157705	B  and ℏΩ = 0.269777*B 

are taken from Ref [29]. This study lays on noticeably 

distinctive physical phenomenon of the effects energy 

spectrum on thermodynamic quantities under influence of 

magnetic field with respect to temperature is explored. 

In Figure 1 we plot Partition function as function of 

temperature with different values of magnetic field strength. 

For the lower values of magnetic field strength partition 

function is rapidly raised to its possible maximum due to 

dominance of temperature value over magnetic field in 

contrary the fact at low temperature partition function attains 

its lower value do to dominance of magnetic fields. Generally 
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for higher magnetic field partition functions take the lower 

phase because of inter influences of temperature and external 

magnetic field effect. 

 

Figure 1. Partition function versus temperature with various magnetic fields 

(# = 20�,# � 25�	and	# � 30�). 

 

Figure 2. Mean energy versus temperature with various values of magnetic 

field strength (# � 2�,# � 4� and	# � 6�). 

 

Figure 3. Entropy (]��. �W,��	as function Temperature with various values 

of magnetic field (B=2T, B=4T, B=6T). 

In Figure 2 we plot Mean energy as function of 

temperature with different values of magnetic field strength. 

For the lower values of magnetic field strength mean energy 

is rapidly raised to its possible maximum due to dominance 

of temperature value over magnetic field. Generally for 

higher magnetic field mean energy take the lower phase 

because of inter influences of external magnetic field wins 

over temperature effect. 

In comparison of Figure 1 and Figure 2 partition function is 

more sensitive to temperature than mean energy. Thus it requires 

higher external field to be manipulated and maintained under 

controlled physical properties in higher temperature. That was 

the defect of previous studies; the researchers confined 

themselves with very lower temperature effect. Most theoretical 

investigations are conducted considering very low parameters 

that are not measurable in real life situation. In our study we 

considered measurable parameters in real life and clearly shows 

that the interdependency of temperature and magnetic field 

yields meaningful physical phenomena. 

 

Figure 4. Specific heat capacity (arb.unit) of GaAs quantum dot as function 

of strong temperature with the various of low magnetic field strength 

(B=0.01T, B=0.02T, B=0.04T). 

 

Figure 5. Specific heat capacity as a function low temperature in T (Kelvin) 

with various values of strong magnetic field (B=10T, B=20T, B=30T). 
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Figure 3 Variation Entropy (arb.unit) with temperature is 

shown in figure 3 that the entropy increases at sufficiently 

low temperature and tends to slower as an increment of 

temperature then it reaches its critical constant value along 

increment of temperature. For the higher value of external 

magnetic field entropy is in position to its lower phase value. 

As it depicted in Figure 4 specific heat capacity of GaAs 

quantum dot as function of strong temperature with the 

various low magnetic field strength (# � 0.01�, # � 0.02� 

and # � 0.04�) the dominance of temperature takeover its 

wining effect over external magnetic field that causes higher 

fluctuation of specific heat capacity essentially for a strong 

temperature. That shows unbalanced influence of temperature 

and magnetic field affect specific heat capacity. 

In figure 5 specific heat as function low temperature with 

strong magnetic field the dominance of against low 

temperature the most fluctuated specific heat capacity 

observed at low temperature regime in contrary that have 

been seen in Figure 5 as such unbalanced interaction of 

magnetic and temperature entails to occur highly fluctuated 

specific heat capacity at very low temperature. 

 

Figure 6. (a) specific heat capacity (ab.unit) of GaAs quantum dot as function of low temperature with the variation of low magnetic field strength and (b) 

specific heat capacity as a function of strong temperature in T (Kelvin). 

Figure 6 (a) specific heat capacity of GaAs quantum dot as 

function of low temperature with the various values of low 

magnetic field strength and figure 6 (b) specific heat capacity 

as a function of strong temperature in T (kelvin). Specific 

heat capacity monotonously increase at low temperature in 

meanwhile increase slowly reached its saturated to its 

constant value along temperature to get merged exhibiting its 

constantan value which is independent of magnetic field and 

temperature. Here very interesting physical phenomena in 

both figure 6 (a-b) shows that equally dominating magnetic 

field and temperature gives almost equal value of specific 

heat capacity of our system where as one dominating over 

another parameters results asymmetric physical properties. 

4. Conclusion and Remark 

We have studied the interdependence of magnetic field and 

temperature effect on thermodynamic properties of two 

interacting electron GaAs quantum dot confined in harmonic 

oscillator potential. The dominance of one over the other 

generally determines the quantities of thermodynamic 

behavior on other hand win-win (equiponderance) effect of 

temperature and magnetic field tunes to fix different values 

the thermodynamic quantities. In our study we have used a 

model of two electrons trapped in GaAs quantum dot in 

nanostructure semiconductor materials. Noticeably deal the 

thermodynamics properties under magnetic fields and 

temperature dependence. We have calculated its dependence 

of thermodynamic quantities partition function, mean energy, 

entropy and specific heat capacity on interdependence of 

applied magnetic field and temperature. 
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