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Abstract: Rock fracture and its failure with time due to external forces and other factors such as fluids, temperature have 

always been a major concern in rock engineering and construction. Based on thermodynamics and theory of solid physics, 

authors propose an energy criterion for rheological failure of rock, which considers two effects: (1) energy dissipation of rock 

reduces strength of rock; (2) confining pressure increases strength of rock. Subsequently, we apply it to stability analysis of 

natural high slope, in order to indicate influence of long time rheology during geology process on material strength and 

stability of slope. After giving an equation of upper limit estimate for failure time of slide surface in slope, according to 

viscoelastic solution of stress about high slope under action of gravity, we calculate the relation between sliding time and dip 

angle (assuming slide line as straight line) and the relation between sliding time and corresponding slid radius (assuming slide 

line as arc. The minimum time is 10
5
 years older. The distribution of contour lines for failure time at each point on the slope 

shows that points near the slope face have shorter failure times. The results explain topographic feature of high mountains in 

some extent and indicate that rheological failure of rock also is one of causes for topography forming of slope. It also indicates 

that the energy criterion for rheological failure of rock provides a base for rheological failure analysis relating to time. 
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1. Introduction 

Rock fracture and its failure due to external forces and other 

factors such as fluids, temperature, and time have always been 

a major concern in rock engineering and construction. To date, 

research on rock fracture mechanisms and failure criteria can 

be conducted from three perspectives: microscale, mesoscale, 

and macroscale. 

At the microscale, some researchers have attempted to 

deduce the strength of materials based on molecular and 

crystal structure theories, but the results yielded values 

significantly higher than those obtained from laboratory 

experiments. This realization led to the understanding that 

numerous factors influence the actual strength of materials. 

For rocks, these factors mainly include pores, porosity, cracks, 

the curvature radius of crack tips, grains, and grain boundaries. 

The study of how these factors affect the strength of rocks 

forms the basis of the microscale theory of rock strength. 

The macroscopic study of rock fracture began earliest. As 

early as the 17th century, Galileo proposed the maximum 

principal stress theory. In 1773, Coulomb proposed the 

Coulomb-Mohr criterion, which was further developed by 

Mohr in 1900. These theories were experimentally validated 

and supported within certain ranges. In 1921, Griffith 

proposed the Griffith theory of brittle fracture in rocks based 

on the concept of progressive failure and crack-controlled 

fracture. This theory achieved some success in explaining the 

mechanisms of crack-opening fracture propagation [10]. 

Based on experimental data, Hoek and Brown proposed a 

nonlinear failure criterion for rocks that matched the 

experimental results well [8]. Subsequently, a large amount of 

research work enriched and improved these theories of rock 

strength [7, 18]. 
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Regarding time-dependent rock mechanics issues, in the 

1980s, the esteemed Chinese scientist Tjongkie Tan proposed 

the theory of rock rheology and dilatancy, emphasizing that 

rocks can undergo dilatancy due to the development of 

microcracks under differential stress, leading to 

time-dependent rock failure or earthquakes. This theory has 

been applied in the analysis of large deformations in Jinchuan 

tunnels and stability analysis of the Fushun West open-pit 

mine [5, 2]. In recent years, scientists and engineers have 

conducted extensive research through field observations, 

laboratory creep experiments, and computer numerical 

simulations, proposing various analytical methods [6, 11, 14, 

4, 19]. However, there is still no definitive failure criterion for 

time-dependent rheological failure [3]. 

This paper presents a universally applicable failure criterion 

for static, dynamic, elastic-plastic, and rheological conditions 

from the perspective of energy change, based on the 

fundamental laws of thermodynamics and solid-state physics. 

It is applied to the analysis of stability in natural high slopes, 

aiming to illustrate the influence of rock rheological properties 

on mountainous landscapes. 

2. Energy-Based Failure Criterion for 

Rock Failure 

Currently, the most commonly used criterion for rock 

fracture in rock mechanics is the Coulomb-Mohr criterion. 

However, for rheological failure, an energy-based criterion is 

more convenient. 

According to the second law of thermodynamics [12], we 

have: 

External work input = Strain energy + Dissipation energy  (1) 

From solid-state physics [9], it is known that when a 

material fails, we have: 

External work input = Cohesive energy + External stress 

influence function + Surface energy      (2) 

Here, the external stress influence refers to the fact that 

stress (such as confining pressure) increases the strength of the 

material. 

Based on this, the expression of the energy-based failure 

criterion for rock can be stated as follows: 

(1) During the action of external forces on the rock, the 

dissipation energy inside the rock reduces the cohesive 

energy of the material by the same amount. 

(2) The action of external forces on the rock has two effects: 

it promotes the development of rock towards failure 

and enhances the rock's resistance to failure. 

(3) When the shear strain energy inside the rock satisfies 

the following equation, the rock will fail: 

0 ( )
p v

ij ij ij ij ijW W d d fσ ε σ ε σ= − − +∫ ∫       (3) 

1

2
ij ijW S S

G
=  represents the shear strain energy, Sij 

represents the stress components, G is the shear modulus, W0 

is the sum of material cohesive energy and surface energy, 

which can be obtained from uniaxial compression-shear 

failure tests performed prior to failure, representing the elastic 

energy applied before failure. The second and third terms on 

the right-hand side represent plastic dissipation energy and 

rheological dissipation energy, respectively. In the examples 

where this criterion is applied in this paper, plastic dissipation 

energy will be neglected. The last term ( )ijf σ  is the 

influence function of stress state on the cohesive strength of 

the rock. For deep Earth conditions with high confining 

pressure, the influence of stress on strength must be 

considered. 

3. Stability Analysis of Natural High 

Slopes 

The phenomenon of deformation and subsequent failure of 

slopes over time is widely observed. By combining field 

instrument monitoring with numerical calculations, it is 

possible to predict the evolution and landslide process of 

slopes over time. However, this requires significant 

manpower and resources. Providing a theoretical analysis 

would be beneficial in deepening our understanding of the 

deformation and failure of slopes over time, making it highly 

valuable. High slopes are commonly found in high mountain 

ranges, such as the Qinghai-Tibet Plateau region. Therefore, 

stability analysis of high slopes is of great importance. Chai 

Jianfeng et al. [1] analyzed the characteristics of deep cracks 

in high and steep slopes in mountainous canyon areas. The 

focus of this paper on high slopes is because they 

approximately satisfy the geometric and boundary conditions 

of stress and displacement fields, making it easier to obtain 

analytical solutions. This section will be divided into the 

following two parts: 1) Solving the viscoelastic solutions for 

the stress and displacement fields of high slopes; 2) 

Calculating the time for slip failure along a predefined slip 

surface within the high slope to determine the final slip surface 

and failure time. 

3.1. Viscoelastic Solutions for High Slopes Under Gravity 

 
Figure 1. Sketch map of the high slope. 

Consider the high slope shown in Figure 1, where the height 

is sufficiently large that the geometric shape of its toe has 
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minimal influence on the stress field in the upper part of the 

slope. The slope medium is assumed to be homogeneous, 

isotropic, and possesses certain rheological characteristics. It 

is subjected to vertical downward gravity. The stress field in 

the upper part of this slope, according to Saint-Venant's 

principle, can be approximated as the stress field of an 

infinitely deep inclined plane. 

Assuming the problem is a two-dimensional plane strain 

problem, the boundary value problem can be described as 

follows [16]: 

Equilibrium equations: 

x 0

0

xy

y xy

x y

Y
y x

τσ

σ τ

∂∂
+ =

∂ ∂
∂ ∂

+ + =
∂ ∂

               (4) 

Here, σx, σy, and τxy represent the stress components, and Y 

represents the body force, i.e., the unit weight. 

Geometric equations: 

, ,x y xy

u v v u

x y x y
ε ε γ∂ ∂ ∂ ∂= = = +

∂ ∂ ∂ ∂
          (5) 

Here εx, εy, γxy represent the strain components, and u, v are 

the displacement components. 

Constitutive equations: 

Kelvin model: S , 3
ij

ij ij ii ii

de
Ge K

dt
η σ ε= + =     (6) 

Maxwell model: , 3
ij ij

ij ii ii

dS de
S K

G dt dt

η η σ ε+ = =    (7) 

Here, ��� , ��� are the deviatoric stress and deviatoric strain, 

���, ��� are the volumetric stress and volumetric strain, and t 

represents time. 

G, K, η
 
are material constants. 

Boundary conditions: 

At y 0, 0, 0y xyσ τ= = =           (8) 

At y tan , 0x X Yα= − = =            (9) 

Here, α is the slope angle; , X Y  represents the stresses in 

the x and y directions on the slope surface. 

Based on the correspondence principle, the above 

viscoelastic boundary value problem can be solved using the 

corresponding elastic solution through Laplace 

transformation. 

From the theory of elasticity, for the corresponding elastic 

problem, we take the stress function as 

3 2 2 3ax bx y cxy dyφ = + + +           (10) 

It clearly satisfies the biharmonic equation 

0φ∇ ⋅∇ =                      (11) 

Therefore, 

2

2

2

2

2

2 6

6 2

2 2

x

y

xy

cx dy
y

Yy ax by gy
x

bx cy
x y

φσ

φσ ρ

φτ

∂= = +
∂

∂= − = + −
∂

∂= − = − −
∂ ∂

         (12) 

By applying the boundary conditions, the final stress 

solution is given by 

x cot

cot

y

xy

g x

gy

g y

σ ρ α
σ ρ
τ ρ α

= −
= −

=

                  (13) 

Since the above equation is independent of material 

properties, it is also a stress field solution for viscoelastic 

media. 

3.2. Estimation of Failure Time and Determination of 

Sliding Surface for Natural High Slopes 

Once we have the stress and strain fields, it is natural to use 

them to predict the stability of the slope. However, the actual 

situation is highly complex. Before a slope can potentially fail, 

it generally undergoes processes such as crack initiation, crack 

propagation, and eventually sliding. These processes cannot 

be captured by our analytical solutions. 

Here, we aim to overcome these difficulties by utilizing the 

energy failure criterion proposed in the previous section and 

the analytical solution presented in section 3.1. Under certain 

assumptions, we seek to obtain an upper limit estimate for the 

potential failure time of the slope. 

Assumptions: 

(1) The potential sliding surface of the slope is a smooth 

curve, which can be considered a smooth line in the 

two-dimensional case. 

(2) When the total shear strain energy and dissipated energy 

on the sliding surface are equal to the total potential energy 

and surface energy on the sliding surface, the sliding surface 

experiences overall failure and sliding occurs. 

(3) The sliding surface that has the minimum failure time 

among all potential sliding surfaces is considered to be the 

first failure surface. 

In the depicted slope shown in Figure 2, let's assume a 

potential sliding line (in two dimensions) denoted as L. The 

total potential energy and surface energy on L are obtained by 

integrating the potential energy and surface energy W0(x,y) at 

each point on the line, given by 

0 0 ( , )
L

W W x y dl= ∫                (14) 

The elastic shear energy on L is given by 
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1

2
ij ij

L
W S S dl

G
= ∫                 (15) 

The time-dependent dissipative energy, disregarding 

instantaneous plastic dissipation, is given by 

0

t
ij

c ij
L

d
W dt

dt

ε
σ= ∫ ∫               (16) 

The influence of stress on cohesive strength is described as 

( ) ( )ij ij
L

f f dlσ σ= ∫                (17) 

The fracture criterion is expressed as 

0 ( )c ijW W W f σ= − +               (18) 

When the above condition is satisfied, the sliding surface 

will experience sliding. 

 
Figure 2. Sketch map of assumed slid surface. 

There are various possible shapes for the potential sliding 

line, such as straight lines and circular arcs. 

 
Figure 3. Sketch map of straight line slide line. 

As shown in Figure 3, with the slope angle α = 45°, let's 

assume the sliding line to be a family of straight lines, given 

by the equation: 

tany x kβ= − +                  (19) 

Taking ρg = 2.7 g/cm³ and µ = 0.25, the stress solution is 

given by: 

( )2.7 , 2.7 , 0.25 , 2.7x y z x y xyx y yσ σ σ σ σ τ= − = − = + =  (20) 

Note that the stress is independent of time. For the Maxwell 

model, the strain is given by [17]: 

0 0

1
ij ij

t
e S

G

K

η
ε σ

 
= + 

 

=
              (21) 

Thus, 

( )2 21 1
( , )

2 2

3.94875, 6.1875, 11.42775

ij ijW x y S S ax bxy cy
G G

a b c

= = + +

= = − =
    (22) 

0
0

1
( , )

2
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T
T

ij

c ij ij ij

de t
W x y S dt S S

dt G

G
W x y T

η

η

 
= = + 

 

=

∫
    (23) 

Integrating along the straight segment in the slope, we 

obtain: 

( ) ( )2 2 2

0

2 3
1 2 3

( , )

1
tan 1 cot

2

1
D )

2 sin

=

= + + = − + +

= + +

∫

∫
(

L

H

W W x y dl

ax bxy cy y x k dy
G

H D H D H
G

β β

β

 (24) 

where 

2

1 2

2 2

3 2

tan

2 tantan

3tan 33tan

ak
D

ak bk
D
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D

β

ββ

ββ

=

= − +
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              (25) 

( , )

2
( , )

2

c c
L

L

W W x y dl

GT
W x y dl

GT
W

η

η

=

=

=

∫

∫                (26) 

Assuming the slope to be a homogeneous medium with a 

constant cohesion energy W0, we have: 

0
0 0

sinL

W H
W W dl

β
= =∫                (27) 

If we take 

3
( ) ( )ij x y zf σ λ σ σ σ= − + +              (28) 

then 

3
( ) 38.44 ( )ijf x yσ λ= +  
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( )

( )
( )

2 3 4
1 2 3 4

3 2

1 23 3
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2 3
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3
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k
A

A

σ λ

β
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β β
β
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β
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∫

  (29) 

Substituting equations (24), (26), (27), and (28) into 

equation (18), we have: 

0 ( )
1

2

ijW f
T

G W

ση  +
 = −
 
 

                   (30) 

From the above equation, we can see that as H increases, T 

also increases, which is consistent with logic. This is also the 

reason for choosing the form of (28) of. ( )ijf σ  

Assuming the rock type of the slope to be basalt, the 

uniaxial compressive strength is approximately σf = 300 MPa, 

and the elastic modulus E = 4.0 x 10
4
 MPa [13]. Thus, 

�� 

��
�

��

 1.125��� . In this paper, we take 

5 2
10 MPaλ − −=  and 2010 Pa sη = ⋅ . 

 
Figure 4. Relation between slide failure time and dip angle of slide line when slide line is assumed as straight line. 

Under the given parameters, when the sliding line is straight, 

the relationship between the sliding failure time and the 

inclination angle of the sliding line is shown in Figure 4 for 

different values of k (the intercept of the sliding line on the 

Y-axis). It can be observed from the graph that as k increases, 

the failure time becomes longer. Additionally, as the 

inclination angle of the sliding line increases, the failure time 

decreases. Calculations show that for k = 10m and H = 23.6m, 

the shortest failure time is 2.9x10
5
 years. 

If we assume that the sliding line is an arc with the slope 

vertex as the center and a radius of r, i.e., 

0cos , sin ,0 180x r y rθ θ θ α= = ≤ ≤ −      (31) 

then 

( )
0 2180

2 2

0

3
2 0

cos cos sin sin
2

( ) sin(2 ) sin (180 )
4

r
W a b c rd

G

r
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G

α
θ θ θ θ θ

α α α

−
= + +

 = + + + − 

∫
                               (32) 

( )
0180

3 3 2 2 3

0

4 3

( ) 38.44 cos 3cos sin cos sin sin )

2 5
38.44 cos sin cos
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                     (33) 

0 0( )= −W w rπ α                                                    (34) 
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Figure 5. Relation between slide failure time and radius of slide line when slide line is assumed as arc. 

Under the same parameters, according to formula (30), the 

calculation for the sliding failure time when the sliding line is 

an arc is shown in Figure 5. It can be observed from the graph 

that as the radius of the sliding line increases from zero, the 

failure time initially decreases and then increases. The shortest 

failure time is 10
5
 years, which occurs when the radius of the 

sliding line is 3.5 meters. 

Under the same parameters, the failure time at each point on 

the slope is calculated using the following equation: 

0 ( )
1

2

ijW f
T

G W

ση + 
= −  

 
               (35) 

The distribution of contour lines is shown in Figure 6. From 

the graph, it can be observed that points near the slope face 

have shorter failure times. Therefore, the rock properties near 

the edge of the slope are more prone to weakening, making 

them susceptible to landslide under external forces. 

 
(Zero point of ordinate is located at 100m depth below the surface, the abscissa is the same as in figure 1) 

Figure 6. Contour line distribution map of failure time of points in slope. 

In reality, it is also possible that a specific point initially 

meets the failure criterion, leading to local failure and the 

formation of cracks. Subsequently, these cracks may 

propagate over time, eventually resulting in a landslide. 
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4. Discussion 

4.1. Determination of Parameters in the Failure Criterion 

The rheological failure criterion proposed in this study 

requires knowledge of parameters such as elastic modulus, 

Poisson's ratio, viscosity constant, uniaxial failure strength, 

and the coefficient of static hydrostatic pressure influence. 

These parameters can be determined through uniaxial tests, 

creep tests, and triaxial tests. Uniaxial tests can determine the 

rock's elastic modulus, Poisson's ratio, and compressive 

strength. Creep tests can determine the rock's viscosity. 

Triaxial tests under different confining pressures can 

determine the coefficient of static hydrostatic pressure 

influence. It is also possible to infer the rheological properties 

of rocks through geophysical observations, such as viscosity 

parameters. Due to the gradual process of energy rheological 

dissipation, especially in shallow layers with lower 

temperatures, the calculated failure times are generally long. 

4.2. Geological Significance of Determining Natural High 

Slope Failure Time 

Natural high slopes are formed naturally during geological 

processes and have a long history. For example, mountains in 

the Qinghai-Tibet Plateau region have existed for tens of 

millions of years [15]. Due to various factors, including tectonic 

uplift, erosion also plays a role in maintaining dynamic 

equilibrium during the uplift of mountainous areas. Based on 

the calculations in this study, we found that after the formation 

of a high mountain, it takes approximately 100,000 years for a 

circular rupture slip plane to form at a depth of approximately 

3.5 meters below the surface due to rock rheology. 

Subsequently, under the influence of gravity, sliding may occur, 

resulting in a landslide. For a linear slip line, the shortest failure 

time occurs at a depth of 23 meters where the line intersects 

with the slope surface, but it still requires 300,000 years. This 

explains why the tops of high mountains are generally 

pyramid-shaped. The calculations also indicate that points near 

the slope surface have shorter failure times, suggesting that they 

are more susceptible to weakening and the formation of cracks 

under external forces. The calculations indirectly suggest that a 

circular slip line dissipates energy faster than a linear slip line. 

Although the medium in the interior of the slope undergoes 

energy dissipation and experiences changes in microstructure 

under the influence of gravity, it does not necessarily lead to a 

landslide but rather indicates a deterioration in rock quality. 

Additionally, the calculated failure times for slip lines or 

individual points are on the order of hundreds of thousands of 

years, which is relatively short compared to geological history. 

In this context, "failure" does not mean complete fragmentation 

of the rock, but rather the generation of microcracks at a certain 

scale. Further calculations would require adjusting the rock 

material parameters to enter a new cycle. 

4.3. Practical Significance of the Rheological Energy 

Failure Criterion 

Once the initial state of the target of the study is determined, 

the rheological energy failure criterion can be applied to 

determine the failure time at the examined points. In addition 

to using analytical solutions as demonstrated in this study, 

numerical solutions are also feasible. Computers provide the 

possibility for long-term calculations. The rheological energy 

failure criterion establishes a foundation for time-dependent 

rheological analysis. 

5. Conclusion 

Based on the fundamental laws of thermodynamics and solid 

physics, this study proposed an energy rupture criterion for rock 

rheology and applied it to the stability analysis of natural slope 

landslides. By using the viscoelastic solutions for high slopes 

under the influence of gravity, we calculate the relation 

between sliding time and dip angle (assuming the slide line is a 

straight line) and the relation between sliding time and 

corresponding slid radius (assuming the slide line as arc. The 

minimum time is 10
5
 years older. The distribution of contour 

lines for failure time at each point on the slope shows that points 

near the slope face have shorter failure times. Therefore, the 

rock properties near the edge of the slope are more prone to 

weakening, making them susceptible to landslide under 

external forces. This partially explains the formation of the 

geomorphic characteristics of high mountains. Moreover, the 

results indicate that the rheological energy failure criterion lays 

the foundation for time-dependent rheological analysis. 
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